材料力学重点及其公式

外力偶矩

传动轴所受的外力偶矩通常不是直接给出,而是根据轴的转速n 与传递的功率P 来计算。 当功率P 单位为千瓦(kW ),转速为n (r/min)时,外力偶矩为

M

e

=9549

P n P n

(N. m)

当功率P 单位为马力(PS ),转速为n (r/min)时,外力偶矩为

M

e

=7024(N. m)

2.5.2切应力计算公式

横截面上某一点切应力大小为 τp =

T ρI p

(3-12)

式中I p 为该截面对圆心的极惯性矩,ρ为欲求的点至圆心的距离。

圆截面周边上的切应力为 τm a x =

I p R

T W t

(3-13)

式中W t =

称为扭转截面系数,R 为圆截面半径。

2.5.3 切应力公式讨论

(1) 切应力公式(3-12)和式(3-13)适用于材料在线弹性范围内、小变形时的等圆截面直杆;对小锥

度圆截面直杆以及阶梯形圆轴亦可近似应用,其误差在工程允许范围内。 (2) 极惯性矩I p 和扭转截面系数W t 是截面几何特征量,计算公式见表3-3。在面积不变情况下,材料离

散程度高,其值愈大;反映出轴抵抗扭转破坏和变形的能力愈强。因此,设计空心轴比实心轴更为合理。

2.5.4强度条件

圆轴扭转时,全轴中最大切应力不得超过材料允许极限值,否则将发生破坏。因此,强度条件为

τm a x =

⎛T ⎫

≤[τ] (3-14) 对等圆截面直杆 τm ⎪

W ⎝t ⎭m a x

a

=x

T m W t

a x

≤[τ] (3-15)式中[τ]为

材料的许用切应力。

3.1.1中性层的曲率与弯矩的关系

1

ρ

=

M EI z

(3-16)

式中,ρ是变形后梁轴线的曲率半径;E 是材料的弹性模量;I E 是横截面对中性轴Z 轴的惯性矩。 3.1.2横截面上各点弯曲正应力计算公式 σ=

M I Z

y

(3-17)

式中,M 是横截面上的弯矩;I Z 的意义同上;y 是欲求正应力的点到中性轴的距离

最大正应力出现在距中性轴最远点处 σm a x =

I z y m ax

M m I z

a x

∙y

=m a x

M W z

m a x

(3-18)

π

32

式中,W z =称为抗弯截面系数。对于h ⨯b 的矩形截面,W z =

d D

16

bh

2

;对于直径为D 的圆形截面,W z =

D

3

对于内外径之比为a =

的环形截面,W z =

π

32

D (1-a ) 。

3

4

若中性轴是横截面的对称轴,则最大拉应力与最大压应力数值相等,若不是对称轴,则最大拉应力与最大压

应力数值不相等。

3.2梁的正应力强度条件

梁的最大工作应力不得超过材料的容许应力,其表达式为 σm a x =

M m W z

a x

≤[σ ] (3-19)

对于由拉、压强度不等的材料制成的上下不对称截面梁(如T 字形截面、上下不等边的工字形截面等),

其强度条件应表达为

σl m ax =

M m ax I z M max I z

y 1≤[σt ]

(3-20a )

σ

y max

=

y 2≤[σc ]

(3-20b )

式中,[σt ], [σc ]分别是材料的容许拉应力和容许压应力;y 1, y 2分别是最大拉应力点和最大压应力点距中性轴的距离。

3.3梁的切应力 τ=

Q S z I z b

*

(3-21)

式中,Q 是横截面上的剪力;S z *是距中性轴为y 的横线与外边界所围面积对中性轴的静矩;I z 是整个横截面对中性轴的惯性矩;b 是距中性轴为y 处的横截面宽度。 3.3.1矩形截面梁

切应力方向与剪力平行,大小沿截面宽度不变,沿高度呈抛物线分布。

2

⎫6Q ⎛h

切应力计算公式 τ=3 -y 2⎪ (3-22)

bh ⎝4⎭

3.3.2工字形截面梁

切应力主要发生在腹板部分,其合力占总剪力的95~97%,因此截面上的剪力主要由腹板部分来承担。

切应力沿腹板高度的分布亦为二次曲线。计算公式为

Q ⎡B τ=⎢(H

I z b ⎣8

2

⎛b

-h )+

2⎝

2

2

h

4

-

⎤⎫2y ⎪⎥⎭⎦

(3-23)

近似计算腹板上的最大切应力:τ

max

=

dh

s 1

d 为腹板宽度 h 1为上下两翼缘内侧距

3.3.3圆形截面梁

横截面上同一高度各点的切应力汇交于一点,其竖直分量沿截面宽度相等,沿高度呈抛物线变化。

最大切应力发生在中性轴上,其大小为

(3-25)

圆环形截面上的切应力分布与圆截面类似。 3.4切应力强度条件

梁的最大工作切应力不得超过材料的许用切应力,即 τ

m a x =

Q m a S x z

I z b

*

m a x

≤[τ]

(3-26)

式中,Q m ax 是梁上的最大切应力值;S z

*m ax 是中性轴一侧面积对中性轴的静矩;I z 是横截面对中性轴的惯

性矩;b 是τ

m ax 处截面的宽度。对于等宽度截面,τm ax 发生在中性轴上,对于宽度变化的截面,τm ax 不一定发生在中性轴上。

1. 纯弯曲梁的正应力计算公式

2. 横力弯曲最大正应力计算公式

3. 矩形、圆形、空心圆形的弯曲截面系数? , ,

4. 几种常见截面的最大弯曲切应力计算公式(

为中性轴一侧的横截面对中性轴z 的静矩,b 为横截

面在中性轴处的宽度)

5. 矩形截面梁最大弯曲切应力发生在中性轴处

6. 工字形截面梁腹板上的弯曲切应力近似公式

7. 轧制工字钢梁最大弯曲切应力计算公式

8. 圆形截面梁最大弯曲切应力发生在中性轴处

9. 圆环形薄壁截面梁最大弯曲切应力发生在中性轴处

4.2剪切的实用计算

名义切应力:假设切应力沿剪切面是均匀分布的 ,则名义切应力为 τ=

Q A

(3-27)

Q A ≤[τ]

剪切强度条件:剪切面上的工作切应力不得超过材料的 许用切应力[τ], 即 τ=5.2挤压的实用计算

名义挤压应力 假设挤压应力在名义挤压面上是均匀分布的,则 σbs =

P bs A bs

(3-28)

≤[σbs ]

(3-29)

式中,A bs 表示有效挤压面积,即挤压面面积在垂直于挤压力作用线平面上的投影。当挤压面为平面时为接触面面积,当挤压面为曲面时为设计承压接触面面积在挤压力垂直面上的 投影面积。

挤压强度条件挤压面上的工作挤压应力不得超过材料的许用挤压应力 σbs =

P A bs

≤[σbs ]

(3-30)

1, 变形计算

圆轴扭转时,任意两个横截面绕轴线相对转动而产生相对扭转角。相距为l 的两个横截面的相对扭转角为

ϕ=

⎰GI

l

T

P

(rad) (4.4)

若等截面圆轴两截面之间的扭矩为常数,则上式化为

ϕ=

Tl GI

P

(rad) (4.5)

图4.2

式中GI P 称为圆轴的抗扭刚度。显然,公式(4.4)的适用条件:

(1) 材料在线弹性范围内的等截面圆轴,即τ≤τP ;

(2) 在长度l 内,T 、G 、I P 均为常量。当以上参数沿轴线分段变化时,则应分段计算扭转角,然后求

n

的正负号与扭矩正负号相同。

代数和得总扭转角。即 ϕ=

∑G

i =1

T i l i

i

I P i

(rad) (4.6)

当T 、I P 沿轴线连续变化时, 用式(4.4)计算ϕ。

2, 刚度条件

扭转的刚度条件 圆轴最大的单位长度扭转角ϕ' max 不得超过许可的单位长度扭转角[ϕ' ], 即

ϕ' max =

T max GI

P

≤[ϕ' ] (rad/m) (4.7)

式 ϕ' m a x =

T m GI

a x P

180

π

≤[ϕ' ]

(︒/m ) (4.8)

2,挠曲线的近似微分方程及其积分

在分析纯弯曲梁的正应力时,得到弯矩与曲率的关系

1

ρ

=

M EI

1

M (x )EI

M (x )EI

对于跨度远大于截面高度的梁,略去剪力对弯曲变形的影响,由上式可得

ρ(x )

=

(4.9)

利用平面曲线的曲率公式,并忽略高阶微量,得挠曲线的近似微分方程,即 ω' ' =将上式积分一次得转角方程为 θ=ω' =再积分得挠曲线方程 ω=

M (x )EI

x +C

(4.10)

⎰⎰

⎡M (x )⎤

dx dx +Cx +D

⎢EI ⎥⎣⎦

(4.11)

式中,C,D 为积分常数,它们可由梁的边界条件确定。当梁分为若干段积分时,积分常数的确定除需利用边

界条件外,还需要利用连续条件。 1、 弯曲 (1)积分法:EIy ' ' (x ) =

M (x ) EIy (x ) =EI θ(x ) =

'

⎰M (x ) d x +C EIy (x ) =⎰[⎰M (x ) d x ]d x +Cx +D

(2)叠加法:f (P 1, P 2)„=f (P 1)+f (P 2)+„, θ(P 1, P 2)=θ(P 1)+θ(P 2)+„

(3)基本变形表(注意:以下各公式均指绝对值,使用时要根据具体情况赋予正负号)

q P M A B A B A B

L L L

θB =

f B =

ML

EI 2ML 2EI

θB =

f B =

PL

2

2EI 3PL 3EI

θB =

f B =

qL

3

6EI 4qL 8EI

θB =

ML 3EI

,

θA =

ML

θB θB

f c =

ML

2

16EI

M i L i 2EI i

2

f c =

PL

3

48EI

f c =

qL

4

6EI 2

PL

=θA =

16EI 3qL

=θA =

24EI

384EI

(4)弹性变形能(注:以下只给出弯曲构件的变形能, 并忽略剪力影响, 其他变形与此相似, 不予写出)

U =

M

2

L

2EI

=∑

=⎰

M

2

(x )dx

2EI

(5)卡氏第二定理(注:只给出线性弹性弯曲梁的公式)

∆i =

∂U ∂P i

=∑

M (x )∂M (x )EI

∂P i

dx

3,梁的刚度条件

限制梁的最大挠度与最大转角不超过规定的许可数值,就得到梁的刚度条件,即 m a x

≤[ω] ,max

≤[θ] (4.12)

3,轴向拉伸或压缩杆件的应变能

在线弹性范围内,由功能原理得 V ε=W =

12F ∆l

F N l EA

当杆件的横截面面积A 、轴力F N 为常量时,由胡克定律∆l =

,可得 V ε=

F N l 2EA 12

2

(4.14)

杆单位体积内的应变能称为应变能密度,用V ε表示。线弹性范围内,得 V ε= 4,圆截面直杆扭转应变能 在线弹性范围内,由功能原 V r =W =将M e =T 与ϕ=图4.5

Tl GI

P

σε (4.15)

12

M e ϕ

2

(4.16)

P

代入上式得 V r =

T l 2GI

根据微体内的应变能在数值上等于微体上的内力功,得应变能的密度V r : V r = 5,梁的弯曲应变能

在线弹性范围内,纯弯曲时,由功能原理得 V ε=W =

12M e θ

12

τr (4.17)

Ml EI

将M e =M 与θ=代入上式得 V ε=

M l 2EI

2

(4.18)

图4.6

横力弯曲时,梁横截面上的弯矩沿轴线变化,此时,对于微段梁应用式(4.18),积分得全梁的弯曲应变能V ε,即V ε=

2.截面几何性质的定义式列表于下:

l

M

2

(x )dx

2EI

(4.19)

3.惯性矩的平行移轴公式

I y =I y C +a A

2

I z =I z C +b A

2

静矩:平面图形面积对某坐标轴的一次矩,如图Ⅰ-1所示。 定义式: S y =

⎰zdA ,S

A

z

=

A

ydA

(Ⅰ-1)

量纲为长度的三次方。

由于均质薄板的重心与平面图形的形心有相同的坐标z C 和y C 。则

A ⋅z C =

由此可得薄板重心的坐标 z C 为 z C 同理有 y C =

S y

⎰z ⋅dA =S

z d A ⎰==

A

y

S y A

A

A

S z A

S

所以形心坐标 z C =,y C =z (Ⅰ-2)

A A

或 S y =A ⋅z C ,S z =A ⋅y C

由式(Ⅰ-2)得知,若某坐标轴通过形心轴,则图形对该轴的静矩等于零,即 y C =0 ,S z =0 ;z C =0 ,则 S y =0 ;反之,若图形对某一轴的静矩等于零,则该轴必然通过图形的形心。静矩与所选坐标轴有关,其值可能为正,负或零。

如一个平面图形是由几个简单平面图形组成,称为组合平面图形。设第 I 块分图形的面积为 A i ,形心

n n

坐标为 y Ci , z Ci ,则其静矩和形心坐标分别为 S z =∑A i y Ci ,S y =∑A i z Ci (Ⅰ-3)

i =1

i =1

n n

i

y C =

S z A

∑A

=

i =1

n i =1

y Ci

,z C =

i

S y A

=

i =1

n

A i z ci

(Ⅰ-4)

A i

∑A ∑

i =1

§Ⅰ-2 惯性矩和惯性半径

惯性矩:平面图形对某坐标轴的二次矩,如图Ⅰ-4所示。

I y =

⎰z

A

2

dA

,I z =

I

A

y dA

2

(Ⅰ-5)

量纲为长度的四次方,恒为正。相应定义

i y =

I

y

A

,i z =

z

A

(Ⅰ-6)

为图形对 y 轴和对 z 轴的惯性半径。

n

n

i =1

i =1

组合图形的惯性矩。设 I yi , I zi 为分图形的惯性矩,则总图形对同一轴惯性矩为I y =∑I yi ,I z =∑I zi (Ⅰ-7)若以ρ表示微面积dA 到坐标原点O 的距离, 则定义图形对坐标原点O 的极惯性矩

I p =

A

ρdA (Ⅰ-8)因为 ρ2=y 2+z 2

2

所以极惯性矩与(轴)惯性矩有关系 I p =

⎰(y

A

2

+z dA =I y +I z (Ⅰ-9)

2

)

式(Ⅰ-9)表明,图形对任意两个互相垂直轴的(轴)惯性矩之和,等于它对该两轴交点的极惯性矩。

下式 I yz =⎰yzdA (Ⅰ-10)

A

定义为图形对一对正交轴 y 、z 轴的惯性积。量纲是长度的四次方。 I yz 可能为正,为负或为零。若 y ,z 轴中有一根为对称轴则其惯性积为零。 §Ⅰ-3平行移轴公式

由于同一平面图形对于相互平行的两对直角坐标轴的惯性矩或惯性积并不相同,如果其中一对轴是图形的形心轴 (y , z c ) 时,如图Ⅰ-7所示,可得到如下平行移轴公式

c

⎧I y =I y +a 2A

C

⎪2⎨I z =I z C +b A ⎪I =I +abA y C z C ⎩yz

(Ⅰ-13)

简单证明之:

I y =

A

z dA =

2

⎰A (z C

+a )dA =

2

A

z C dA +2a ⎰z C dA +a

A

22

⎰dA

A

其中

A

z C dA 为图形对形心轴 y C 的静矩,其值应等于零,则得

I y =I y C +a A

2

同理可证(I-13)中的其它两式。

结论:同一平面内对所有相互平行的坐标轴的惯性矩,对形心轴的最小。在使用惯性积移轴公式时应注意 a ,b 的正负号。把斜截面上的总应力p 分解成与斜截面垂直的正应力σn 和相切的切应力τn (图13.1c ), 则其与主应力的关系为

σn =σ1l +σ2m +σ3n (13.1)

2

2

2

τn = (13.2)

在以σn 为横坐标、τ

n 个主应力所确定的三个圆所围成区域(图13.213.2显见

τm ax =

σ1-σ3

2

2、 扭转 Φ

=TL GI

p

T (x )dx GI

p

=∑

T i L i GI

p

=

φ

=

L

=

GI

p

π

( /m )

三、应力状态与强度理论

1、 二向应力状态斜截面应力

σα=

σ

x

+σ2

y

+

σ

x

-σ2

y

cos 2α-τxy sin 2α

τα=

σ

x

-σ2

y

s i n 2α+τxy c o s 2α

2、 二向应力状态极值正应力及所在截面方位角

σσ

max min

=

σ

x

+σ2

y

±(

σ

x

-σ2

y

)

2

2xy

tg 2α0=

-2τ

xy y

σ

x

3、 二向应力状态的极值剪应力

τmax =

(

σ

x

-σ2

y

) +τ

2

2xy

注:极值正应力所在截面与极值剪应力所在截面夹角为450

4、

三向应力状态的主应力:σ1

最大剪应力:τmax

=

≥σ2≥σ3

σ1-σ3

2

5、二向应力状态的广义胡克定律 (1)、表达形式之一(用应力表示应变)

εx =

1E (σ

x

-μσ

y ) εy =

1E

y

-μσx )

εz

=-

μ

E

x

+σy ) γ

xy

=

τxy

G

(2)、表达形式之二(用应变表示应力)

σ

x

=

E 1-μ

2

(εx +με

y ) σ

y

=

E 1-μ

2

y

+μεx )

σz =0 τxy =G γ

xy

6、三向应力状态的广义胡克定律

εx =

1E

[σx -μ(σy +σz )]

(x , y , z )

γ

xy

=

τxy

G

(xy , yz , zx )

7、强度理论

(1)σr 1=σ1≤[σ1] (2)σr 3

=σ1-σ3≤[σ]

σr 2=σ1-μ(σ2+σ3)≤[σ

r 4

] [σ]=

2

2

≤[σ] [σ]=1)]

σb

n b

σ=

1

[(σ

2

1

22)

+(σ

2

-σ3)+(σ3-σ

σ

s

n s

7、圆轴弯扭组合:①第三强度理论 σr3

②第四强度理论 σr4

8、平面应力状态下的应变分析 (1)εα=(2)

εmax εmin

=2w

+4τ

2n

=

M

2w

+M

2n

W z M

2w

≤[σ

2n

]

≤[σ

2w

+3τ

2n

=

+0. 75M W z

]

εx +ε

2=

y

+

εx -ε

y

⎛γxy ⎫

⎪sin 2αcos 2α- -

⎪2⎝⎭

y

⎛γα⎫εx -ε

-⎪=

22⎝⎭

y

⎛γxy ⎫

⎪c o s s i n 2α+ -2α

⎪2⎝⎭

εx +ε

2

y

⎛εx -ε

2⎝⎫

⎪⎪⎭

2

⎛γxy + 2⎝⎫⎪⎪⎭

2

tg 2α0=

γ

xy

εx -εy

四、压杆稳定

1、临界压力与临界应力公式(若把直杆分为三类)

①细长受压杆 ②中长受压杆 ③短粗受压杆

λ≥λp

P cr

=

πEI

2

min 2

(μL )

σ

cr

=

πE λ

2

2

λp ≥λ≥λs σcr =a -b λ

λ≤λs “σcr ”=σs 或 σb

=

2、关于柔度的几个公式 3、惯性半径公式i =

I z A

λ=

μL

i

λp

i z =

d 4

πE σ

p

2

λs

=

a -σb

s

(圆截面

,矩形截面i min =

b (b 为短边长度))

五、动载荷(只给出冲击问题的有关公式) 能量方程 冲击系数

∆T +∆V =∆U

(自由落体冲击)

K d =

v 0

2

K d =1+

+

2h ∆st

g ∆st

(水平冲击)

六、截面几何性质

1、惯性矩(以下只给出公式,不注明截面的形状)

I P =⎰

ρdA =

2πd

4

πD

4

(1-α) α=

4

d

32

I z =

⎰y

2

dA =

πd

4

64

3

W z πd

z =

I y =

max

32

32

πD

4

4

64

(1-α) πD

3

32

(1-α4

) D

bh 3

hb 3

12 12

bh

2

hb 26

6


相关范文

  1. Excel培训大纲

    Excel培训大纲 对于办公软件的使用,权威机构做过统计,普通使用者平均仅掌握20%的应用软件功能,进行一次有效的软件技能培训提高25%的生产率,相当于培训投资回报率的2000%.有效的培训将大幅提高被培训者的工作效率,节省大量的工作时间(可能会因此避免很多的加班喔). Excel是功能强大的工具, ...

  2. 注册勘察设计工程师基础考试经验介绍

    前言: 注册土木工程师(水利水电工程)执业制度于2005年9月起已正式实施,但目前暂时还没有很严格的执行,直接原因是由于这项职业准入制度颁布时间还不长,取得相关资格的人还不够多.这点业内人士应该都是有所体会的,如果现在立刻严格执行,很多中小设计院 是要直接被取消资质的.但早日实施职业准入制度对加强对 ...

  3. 热工基础 秦萍 1-8章复习

    第一章小结 重点再现 1.平衡状态 关于平衡状态的定义.实现条件.以及平衡与均匀.平衡与稳定的概念区别已在相应章节中进行了详细叙述.平衡状态具有确定的状态参数,这是平衡状态的特点.平衡状态概念的提出,使整个系统可用一组统一的.并具有确定数值的状态参数来描述其状态,使热力分析大为简化,这也是工程热力学 ...

  4. 08下大学物理(2)考试解读-1 重点考点

    第一部分 <大学物理学A (2)>(64学时)考试卷面分数分配 据教学大纲教学时数进行试题占分分配:100 62 该部分学时数 第四篇 热学(共16学时) 卷面占25分 第十一章 气体动理论(6学时-----9.7分) 第十二章 热力学第一定律(6学时-----9.7分) 第十三章 热力 ...

  5. 渗流力学名词解释及重点公式

    渗流力学名词解释 1. 渗流:流体通过多孔介质的流动 2. 多孔介质:由毛细管或微毛细管组成的介质. 3. 折算压力Pz:将油藏内各点的压力按静水力学内部压力分布规律折算到同一水平面上的压力, 该压力即为折算压力. 4. 驱动方式:在油藏开采过程中主要依靠哪种能量来驱动, 就称为何种驱动方式. 5. ...

  6. 泰勒公式的深刻理解

    泰勒公式的深刻理解 1 学生对泰勒公式的疑惑及其根源分析 泰勒公式这一节的教学目标是要求学生理解泰勒公式, 并了解它的一些应用.然而, 在完成教学任务后仍有相当多的学生心存疑惑, 不能不说这是教学上的一个失败.平时和学生聊起数学的学习, 谈到泰勒公式, 很多学生都说不理解; 讲课中要用到泰勒公式时, ...

  7. 财务报表内部逻辑关系

    财务报表的逻辑关系: 在财务报表中,有些勾稽关系是精确的,即各个项目之间可以构成等式.如: 资产=负债+所有者权益: ①资产 流动资产=货币资金+短期投资+应收票据+应收股利+应收利息+应收账款+其他应收款+预付账款+应收补贴款+存货+待摊费用+其他流动资产 长期投资=长期股权投资+长期债权投资 固 ...

  8. 必修2物理

    人教版高中物理(必修二) 重.难点梳理 第五章 机械能及其守恒定律 5.1 追寻守恒量 教学要求: 1.通过实例了解能量: 2.知道自然界中能的形式多样性及其转化. 教学重点: 使学生了解守恒思想的重要,在物理学的发展过程中,能量的概念几乎是与人类对能量守恒的认识同步发展起来的,能量的概念之所以重要 ...

  9. 高中物理必修2教材重难点分析

    高中物理必修2教材重难点分析 第五章 曲线运动 5.1曲线运动 教学要求: 1.知道曲线运动的速度方向 2.理解曲线运动的条件 3.感受飞镖.钢球所作的曲线运动 教学重点: 1.曲线运动的速度方向是轨迹曲线的切线方向 2.曲线运动的受力条件是合力与速度不在一条直线上 3.曲线运动的性质是变速运动 4 ...

  10. 2016年建设工程经济重点公式汇总

    投资收益率 总投资收益率(ROI)和资本金净利润率(ROE ) 技术方案资本金=自有资金 注意是年 平均利润总额 盈亏平衡点 敏感性指标分析 总成本 本法. 增量投资收益率 方案比较 总成本(旧)=60+300*产 总成本(新)=80+250*产 (1)什么产量下新老方案一样?(临界产量)60+30 ...